The Higgs and Other Physics of the LHC

Thomas Gadfort
Brookhaven National Laboratory

Overview

What We Already Know: The

Standard Model

The Higgs Boson

Overview

What We Already
Know: The
Standard Model

Why Do Particles Have Mass?

The Higgs Boson

What Do We Know Is There?

Forces

Particles

What Do We Know Is There?

Particles

Forces

Electromagnetism

Weak

Strong

Gravity

What Do We Know Is There?

Forces

Electromagnetism

Weak

Strong

Gravity

Particles

Three Generations of Matter

Overview

What We Already Know: The

Standard Model

Why Do Particles Have Mass?

The Higgs Boson

Elementary Particle Masses

Over 30 fundamental particles + antiparticles

 $m_{\rm top} \approx 170 \times m_{\rm proton}$

 $m_{\rm charm} \approx m_{\rm proton}$

 $m_{\rm electron} \approx m_{\rm proton}/1000$

 $m_{\mathrm{neutrino}} \approx m_{\mathrm{proton}}/100,000,000,000$

 $m_{\rm photon,gluon} = 0$

Why?

The Story of Mass

Today

Massive Particles

time →

The Big Bang

Massless Particles

The Story of Mass

≈10⁻¹² seconds after the Big Bang a new field permeates space and starts interacting with certain particles.

The Big Bang

Massless Particles

Today

Massive Particles

The "force" that these particles feel is mass!

The Higgs Field

The Higgs Field

Overview

What We Already Know: The

Standard Model

Why Do Particles Have Mass?

The Higgs Boson

The Higgs Boson

If the Higgs field is there then we should also see a new particle called the *Higgs Boson*.

How do we find it?

Search for the Higgs Boson

The Higgs Boson wants to decay into massive particles (the more mass the better!)

Search for the Higgs Boson

The Higgs Boson wants to decay into massive particles (the more mass the better!)

Previous experiments tell us that

$$m_W < m_{\rm Higgs} < m_{\rm top}$$

Search for the Higgs Boson

The Higgs Boson wants to decay into massive particles (the more mass the better!)

Previous experiments tell us that

$$m_W < m_{\rm Higgs} < m_{\rm top}$$

Higgs Event

I) proton +protoncollision

time →

Higgs Event

time →

Higgs Event

time →

Proton

Proton

Protons collide in the center of the detector.

1111111111111

Protons collide in the center of the detector.

Higgs is produced and decays to 2 W bosons.

Protons collide in the center of the detector.

Higgs is produced and decays to 2 W bosons.

Electrons bend in the magnetic field and deposit energy in the calorimeter.

Proton

Proton

Protons collide in the center of the detector.

Higgs is produced and decays to 2 W bosons.

Higgs

Electrons bend in the magnetic field and deposit energy in the calorimeter.

Neutrinos escape detector. Use energy imbalance to infer they were there.

When Will We Know?

The answer depends on its mass.

When Will We Know?

If it's heavy (close to the top quark) we might see it in 2011-2012.

The answer depends on its mass.

When Will We Know?

If it's heavy (close to the top quark) we might see it in 2011-2012.

The answer depends on its mass.

If it's light (close to the W) we might not see it until 2016.

More Higgs @ Borders

NATIONAL LABORATORY

by Ian Sample

by Leon Lederman

Is There More To Find?

Next, you'll hear about a hypothetical particle called a *leptoquark* and why we might find it soon at ATLAS